Uc3842: описание, принцип работы, схема включения, применение

Управление по напряжению (Voltage Mode)

В этом режиме скважность ШИМ сигнала, управляющего силовыми ключами, определяется непосредственно выходным напряжением. При гистерезисном управлении, если напряжение на выходе ниже нормы – идет «накачка» источника

Если напряжение на выходе больше порога – компаратор блокирует управление силовым ключом, идет разряд выходной накопительной емкости. В англоязычной литературе такой режим называют «hiccup-mode» – «режим с икотой»

При гистерезисном управлении, если напряжение на выходе ниже нормы – идет «накачка» источника. Если напряжение на выходе больше порога – компаратор блокирует управление силовым ключом, идет разряд выходной накопительной емкости. В англоязычной литературе такой режим называют «hiccup-mode» – «режим с икотой».

Данный режим используется сравнительно редко, так как сопровождается большими пульсациями выходного напряжения и требует накопительного конденсатора сравнительно высокой емкости. Рисунок 5 демонстрирует принцип работы режима управления по напряжению с гистерезисным управлением. Здесь и далее не показана выходная часть источника, так как определяется топологией, выходной мощностью и др. Для иллюстрации принципа работы ШИМ-контроллера иногда будет показан пример с выходной частью.

Рис. 5а. Первая схема – с фиксированным выходным напряжением, вторая – с регулировкой выходного напряжения.

Рис. 5б. Диаграммы выхода ШИМ и выхода компаратора.

Рис. 6. Пример выходного каскада повышающего импульсного источника питания, подключенного к ШИМ контроллеру (см.рис.5).

Конфигурируемые логические ячейки (CLC) на рис .5 можно включить как элемент И. Для предотвращения высокочастотной генерации от компаратора его выход целесообразно пропустить через еще одну CLC – D-триггер с синхронизацией от сигнала ШИМ

В этом случае получим два «бонуса» — отсутствие возникновения высокочастотной генерации и неизменность скважности управляющего ШИМ (см. пояснения на рис

7). Подробнее о конфигурируемых логических ячейках см. в статье «Конфигурируемые логические ячейки в PIC микроконтроллерах» .

Рис.7.а. Укорочение управляющих ШИМ импульсов, возможность появления высокочастотной генерации

Рис. 7.б. Синхронизация сигналов позволяет предотвратить укорочение ШИМ импульсов

Рис. 8. Синхронизация сигналов для предотвращения генерации и укорочения ШИМ.

Как смоделировать работу микросхемы

При моделировании работы нет необходимости в выпаивании микросхемы. Но обязательно нужно выключать устройство перед началом проведения работ. Проверка схемы на UC3842 заключается в том, чтобы на нее подать напряжение от внешнего источника и оценить работу. Процедура проведения работы выглядит так:

Отключается блок питания от сети переменного тока. От внешнего источника стабилизированного напряжения и тока подается на седьмой контакт микросхемы напряжение больше 16 В. В этот момент должен произойти запуск микросхемы

Обратите внимание на то, что микросхема не начнет работать до тех пор, пока напряжение не окажется выше 16 В. Используя осциллограф или вольтметр, нужно произвести замер напряжения на восьмом выводе

На нем должно быть +5 В. Убедитесь в том, что напряжение на восьмом выводе стабильно. Если снизить напряжение источника питания ниже 16 В, то на восьмом выводе пропадет ток. Используя осциллограф, проведите замер напряжения на четвертом выводе. В том случае, если элемент исправен, на графике будут импульсы пилообразной формы. Измените напряжение источника питания – при этом частота и амплитуда сигнала на четвертом выводе останутся неизменными. Проверьте осциллографом, есть ли на шестой ножке прямоугольные импульсы.

Только в том случае, если все вышеописанные сигналы имеются и ведут себя так, как и нужно, можно говорить об исправности микросхемы. Но рекомендуется проверять исправность и выходных цепей – диод, резисторы, стабилитрон. При помощи этих элементов происходит формирование сигналов для осуществления токовой защиты. Они выходят из строя при пробое.

Как работает микросхема

А теперь нужно рассмотреть кратко работу элемента. При появлении на восьмой ножке постоянного напряжения +5 В происходит запуск генератора OSC. На входы триггера RS и S поступает положительный импульс небольшой длины. Далее, после подачи импульса, происходит переключение триггера и на выходе появляется ноль. Как только импульс OSC начнет спадать, на прямых входах элемента напряжение окажется равным нулю. А вот на инвертирующем выходе появится логическая единица.

Эта логическая единица позволяет открыть транзистор, поэтому электрический ток начнет протекать от источника питания через цепочку коллектор-эмиттер к шестому выводу микросхемы. Отсюда видно, что на выходе будет находиться открытый импульс. И он прекратится только тогда, когда на третий вывод будет подано напряжение 1 В или выше.

Импульсные БП на микросхеме

Для наглядности нужно рассмотреть описание работы источника питания на UC3842. Впервые она начала применяться в бытовой технике во второй половине 90-х годов. У нее явное преимущество перед всеми конкурентами – малая стоимость. Причем надежность и эффективность не уступают. Для построения полноценной схемы стабилизатора напряжения практически не требуются дополнительные компоненты. Все делается «внутренними» элементами микросхемы.

Элемент может быть выполнен в одном из двух типов корпуса – SOIC-14 или SOIC-8. Но нередко можно встретить модификации, выполненные в корпусах DIP-8. Нужно заметить, что последние цифры (8 и 14) означают количество выводов микросхемы. Правда, различий не очень много – в случае если элемент с 14-ю выводами, просто добавляются выводы для подключения массы, питания и выходного каскада. На микросхеме строятся стабилизированные источники питания импульсного типа с ШИМ-модуляцией. Обязательно для усиления сигнала используется МОП-транзистор.

Связанные материалы

А.П. Семьян — 500 схем для радиолюбителей — Источники питания…
Книга продолжает ряд тематических изданий в серии «Радиолюбитель». В ней представлены самые…

Лабораторный импульсный блок питания. Часть 6. Защита ИБП и регуляторы тока нагрузки…
Ограничение выходного тока импульсного блока питания необходимо прежде всего для защиты испытуемой…

Прецизионные усилители низкой частоты. Данилов А. А….
Данилов А. А. Прецизионные усилители низкой частоты. — М.: Горячая линия — Телеком, 2004. — 352 с,…

Радиолюбителям: полезные схемы. Книга 6. Шелестов И.П….
Радиолюбителям: полезные схемы. Книга 6. Шелестов И.П. Издательство: «COЛOH-Пpecc» Год: 2005…

Лабораторный блок питания на скорую руку из компьютерного БП (4-24V, 5-12A)…
При необходимости лабораторный БП (ЛБП) с регулируемым выходным напряжением от 4-х до 24В и током…

Энциклопедия электронных схем. Том 7. Часть III. Граф Р., Шиитс В….
Энциклопедия электронных схем. Том 7. Часть III. Граф Р., Шиитс В. Издательство: ДМК Пресс Год…

Taschibra (Ташибра, Tashibra). Лабораторный импульсный блок питания. Часть 2. ЛБП на компараторах + блок защиты…
Продолжая тему о быстром изготовлении лабораторного блока питания (далее ЛБП) из доступных…

Реинкарнация компьютерных БП. Часть 4…
Завершая статью четвертой ее частью, представляю схему еще одного преобразователя, являющегося по…

Современные усилители на микросхемах. Баширов С.Р….
Современные усилители на микросхемах. Баширов С.Р. В данном издании рассмотрены конструкции узлов…

Лабораторный импульсный блок питания. Часть 5. Миниатюрный лабораторный ИБП…
Несмотря на простоту схем импульсных блоков питания, описанных в предыдущих частях серии,…

Лабораторный импульсный блок питания. Часть 3. ЛБП на таймерах 555…
Таймеры так же заслуживают внимания в деле строительства лабораторных источников питания. Обладая…

Эксперименты с электронным трансформатором Taschibra (Ташибра, Tashibra)…
Думаю, что достоинства этого трансформатора оценили уже многие из тех, кто когда-либо занимался…

Состав.

В его составе имеется:
   — источник опорного напряжения на 5В с внешним выводом 8;
   — схема защиты от снижения напряжения питания (UVLO).
   — генератор пилообразного напряжения (генератор);
   — компаратор тока, используется в основном по сигналу ограничения тока;
   — усилитель ошибки, используется в основном по напряжению;
   — схема управления работой выходного каскада;

Микросхемы UCx844 и UСx845 имеют встроенный счетный триггер (обозначенный пунктиром), который служит для получения максимального рабочего цикла (шим-заполнения), равного 50%. Поэтому для задающих генераторов этих микросхем, нужно установить частоту переключения вдвое выше необходимой. Генераторы микросхем UCх842 и UCх843 устанавливаются на необходимую частоту переключения.
Максимальная рабочая частота задающих генераторов контроллеров семейства UCх842/3/4/5, может достигать 500 кГц.
Чем ещё отличаются друг от друга эти микросхемы. Это разным напряжением питания для этих микросхем.
Смотрим таблицу ниже;

 НАПРЯЖЕНИЕ 
ВКЛЮЧЕНИЯ — 16 В, 
 ВЫКЛЮЧЕНИЯ — 10 В 
 НАПРЯЖЕНИЕ 
 ВКЛЮЧЕНИЯ — 8.4 В, 
 ВЫКЛЮЧЕНИЯ — 7.6 В 
ДИАПАЗОН
РАБОЧИХ
ТЕМПЕРАТУР
 КОЭФФИЦИЕНТ 
ЗАПОЛНЕНИЯ
РАБОЧИЙ ЦИКЛ
 
UC1842UC1843-55°С… +125°Сдо 100%
UC2842UC2843-40°С… +85°С
UC3842UC38430°С… +70°С
 
UC1844UC1845-55°С… +125°Сдо 50%
UC2844UC2845-40°С… +85°С
UC3844UC38450°С… +70°С
 

Ещё микросхемы с суффиксом «А», например UC3842A, имеют в два раза меньший ток запуска — 0,5 мА. Микросхемы без суффикса «А» имеют пусковой ток около 1,0 мА.
Да, ещё совсем забыл про корпуса микросхем. Мы здесь рассматриваем в основном микросхемы в восьми-выводном корпусе DIP-8 (может быть суффикс «N», так же может быть керамический CERDIP-8 корпус (суффикс «J»), или SOIC-8 корпус (суффикс «D8»). Цоколёвки восьми-выводных микросхем полностью совпадают.
Так же микросхемы могут выпускаться и в 14-ти выводном «SOIC-14» корпусе, с суффиксом «D», и могут быть и в корпусе «PLCC-20» (суффикс «Q»). Цоколёвки микросхем в этих корпусах отличаются.
Отечественные микросхемы серии 1114, выполнены в корпусе Н02.8-2В. Это десяти-выводной металлокерамический корпус (ниже на рисунке) по пять выводов с каждой стороны, средние выводы из которых, являются просто технологической перемычкой и не учитываются. То есть получаются те же восемь выводов.

Теперь по маркировке можно определить, что это за микросхема, например UC3843AD;
— это шим-контроллер с пониженным током запуска (500 мкА), с включением в работу при достижении напряжения питания 8,4 вольта и выключением при достижении порога напряжения питания 7,6 вольта, с рабочим циклом до 100% и выполнена в корпусе «SOIC-14».

Что потребуется для диагностики неисправностей

Нужно отметить, что применение UC3842 нашла исключительно в преобразовательной технике. И для нормальной работы блока питания необходимо убедиться в том, что элемент исправен. Вам потребуются такие приборы для проведения диагностики:

  1. Омметр и вольтметр (подойдет самый простой цифровой мультиметр).
  2. Осциллограф.
  3. Источник стабилизированного по току и напряжению питания. Рекомендуется использовать регулируемые с максимальным выходным напряжением 20..30 В.

Если у вас нет какой-либо измерительной техники, то проще всего при диагностике проверить сопротивление на выходе и смоделировать работу микросхемы при работе от внешнего источника питания.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий